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Quaternionic Hilbert space and colour confinement: 11. The 
admissible symmetry groups 

J Rembielidski 
Institute of Physics, University of Lodz, 90-136 Lodz, Narutowicza 68, Poland 

Received 15 November 1978 

Abstract. The classification problem of the admissible (with respect to the quaternionic 
structure of the Hilbert space) representations of the semi-simple compact Lie groups is 
considered. It is found that a symmetry group G must be of the form G = GF x G, where the 
colour group G, is isomorphic to the SU(3r) and r is odd. The natural selectiov rules 
generated by quaternionic structure are equivalent to the confinement of colour, i.e. total 
algebraic confinement of SU(3r), degrees of freedom holds. 

1. Introduction 

In the previous paper (Rembielinski 1979) (hereafter cited as paper I) it was shown that 
the formalism of the quaternionic Hilbert space (QHS) with complex geometry can be 
adequate for the description of the coloured hadron states. The results of I can be 
summarised as follows: 

( a )  The QHS with complex geometry is isomorphic to the complex Hilbert space 
(CHS) with appropriate structure essentially determined by the representations 1,2, and 
2 of the unitary group U(2),. If the theory possesses a symmetry group G then 
U(2),c G. The admissible representations D(G) of G contain only the representations 
1, 2 and 3 of U(2), i.e. D(G) 1 U(2), = (01) 0 (02) 0 (02). 

( b )  This result allows us to define in a unique and consistent manner the 'tensor' 
product of the QHS: 

2 1  x 2 2  x . . . x 2" = rI( 2 1  0 2 2  0. . -0 2"). 

Here 2 k  are the carrier spaces of the admissible representations of G and rI projects the 
standard tensor product (0) of Xk on the whole subspace of the admissible represen- 
tations. 

( c )  The observable states must necessarily be singlets of the group SU(2),c U(2),. 
Thus the SU(2), degrees of freedom can be interpreted as the colour, i.e. SU(2), is a 
subgroup of the colour group G,. 

In this paper the classification problem of the admissible (by quaternionic structure) 
representations of the classical semi-simple compact Lie groups is considered. The plan 
of this article is as follows. In § 2 we give the branching rules for reduction of the 
simple? group G, to the subgroup SU(2),. The representations admissible with respect 

t It is sufficient to consider only simple groups. This follows from the fact that the condition D(G) 4 SU(2), = 
(01) 0 (02) implies that SU(2), must belong to a simple component of G. Thus the symmetry group G has 
the form G = GF x G, where the colour group G, is simple and SU(2), c G,. 

0305-4470/80/010023 + 08$01.00 @ 1980 The Institute of Physics 23 



24 J Rembielin'ski 

to the SU(2), for groups SU(N), SO(N)  and Sp(l) are investigated in § 3. It is found that 
only the fundamental representations of these groups can eventually be admissible. 
This result allows us to give the classification of the representations admissible with 
respect to the group U(2),. This is done in 0 4. It is shown in 0 5 that some fundamental 
physical requirements strongly restrict the class of admissible groups. It is found that as 
colour groups we can choose only the special unitary groups SU(3r) where r is odd. It is 
shown that the total algebraic confinement of the SU(3r) degrees of freedom holds. 

2. Branching rules 

In this section the following convention is adopted: 

G,, i.e. 
( A )  denotes the Young diagram of the irreducible representation D(G,) of the group 

A ,  A 2 _  ............... 
............... ............... ............ 
A1 

where A i  2 A i t l ,  A i  = 0 for i > I ,  1 is the rank of G, and A i  is the number of the Young 
boxes in the ith row; 0 is a Young box associated with the basic representation of G,; 
0 is a Young box associated with the self-representation of SU(2),; a is a Young box associated with the kth self-representation of SU(2), contained in 

is a Young diagram associated with pth scalar of SU(2), contained in the basic 

d and s denote the number of SU(2), doublets and singlets respectively contained in 

We restrict ourselves to the case when the basic representation of G, contains only 

the basic representation of G,; 

El 
representation of G,; 

the basic representation of G,. 

the SU(2), doublets and singlets, i.e. 

U M J ( 2 ) , = 0 + 0 + .  . .  t La+[+. . .+[ 

and consequently 

dim = 2d + s. 

Following Hammermesh (1962) we can formulate the branching rules for reduction 
of the simple Lie groups to the SU(2), in Young diagrams language. In every box of the 
Young diagram ( A )  we write down the expansion (1) of $ SU(2),, i.e. 

and then construct all possible SU(2) Young schemes following the rules (i)-( iii). 
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(i) From every box of the diagram ( A )  we choose subdiagrams or and multiply 

them according to the standard rules for SU(2). We repeat this procedure in all possible 
1 

ways except the cases when in the same row or column of the basic diagram the indices 
of subdiagrams coincide. 

(ii) In the later case we must take into account the symmetrisation (antisym- 
metrisation) of the basic boxes, i.e. in the constructed SU(2) Young schemes the 

subdiagrams (a and or and [) must appear in the symmetric (antisymmetric) 
configuration. 

(iii) We must take into account the transitivity of the symmetrisation (antisym- 
metrisation) relation in the rows and columns of the diagram ( A )  to obtain the correct 
multiplicity of the SU(2) representations. More precisely, the SU(2), diagrams obtained 
by a permutation of boxes in the rows or columns of the Young table ( A )  are equivalent. 

Examples. Let G, - SU(4) and 

i.e. 

( U )  for ( A )  =m we have 

= m + 2 0 + 3 R  
( b )  for ( A )  = we have E 

+ 2  El B 1 5 U 2 t =  ~ ~ ~ 1 ~ ) ~ - ~  
o + I + R  

3. Representations admissible with respect to the SU(2), 

A representation D(G,) = ( A )  of the group G, =, SU(2), is admissible with respect to the 
SU(2), iff it contains the SU(2), singlets and doublets, that is only iff ( A )  & SU(2),= 
(01) 0 (02). It is obvious that a representation ( A )  of G, can be eventually admissible 
only if the basic representation is admissible. 

From the above definition and the branching rules (i)-(iii) it is easy to see that a 
representation ( A )  is admissible iff in the expansion ( A )  .1 SU(2), the diagram with a 
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maximal number of boxes in the first row is admissible: 

.................... 
Consequently the representation ( A )  is admissible with respect to SU(2), iff 

(Al+hZ+.  . .+hd)-(hd+s+l+. . . + A , ) = O  
or 

( A l + A Z + .  . .+hd)-(Ad+s+l+. . .+Al)=l .  

We now apply this result to the determination of the admissible (with respect to 
SU(2),) representations for the groups SU(N), Sp(1) and SO(N). 

3.1. SU(N) 

In this case dim 0 = 1 + 1 = 2d +s, i.e. d + s + 1 = 1 + 2  - d. From equations (4a, b )  we 
obtain 

h i  +(A2-h,-d+z)+(h3-AI-d+3)+. . .  +(hd-hl) - 0  Or 1. ( 5 )  

Because A i  3 Ai+l equation (5) admits only the following solutions: 
( a )  If d > 1, SU(N) singlet and self-representations are admissible (1, N and ff). 
( b )  If d = 1, all fundamental representations and scalars are admissible (1, N, 

(3, * - * 9 (9, f * * 9 m. 
3.2. Sp(1) 

In this case dim = 21 = 2d + s, i.e. d + s + 1 = 21 - d + 1. From equations (4a, b )  we 
have (note that 0 < d s I )  

A i + A Z + .  . .+hd=OOr 1. (6 )  

Because hi 5 Ai+l 5 0, the group Sp(1) possesses the following admissible represen- 
tations: 

( a )  If d > 1, scalar and self-representation (1 and 21); 
( b )  If d = 1, scalar and all fundamental representations. 

3.3. SO(N) (tensor representations) 

In the case N = 21, dim = 21 = 2d +s, i.e. d + s + 1 = 21 - d + 1 and equations (4a, 6) 
have the form (6) .  For N=21+1,  d i m n = 2 1 + 1 = 2 d + s  i.e. d + s + l = 2 1 - d + 2 .  
Because 0 < d s I ,  the equations (4a, b )  have the form (6) .  Thus for SO(N) the solution 
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is analogous to the Sp(1) case: admissible are 
( a )  scalar and self-representation if d > 1; 
( b )  scalar and all fundamental (tensor) representations if d = 1. However, the 

self-representation of SO(N) is real positive, while the SU(2) doublet is pseudo-real 
(Mehta 1966). Thus d is even and consequently case ( b )  must be ruled out. 

The admissible spinor representations of SO(N) are considered in 0 5 .  

4. Representations admissible with respect to the U(2), 

A representation D(G,) of the group G, 3 U(2), is admissible with respect to the U(2), if 
it is admissible with respect to the SU(2),c U(2),. Thus the results of the preceding 
section are sufficient to the determination of the representations of G, admissible with 
respect to U(2),. 

4.1. SU(N) 

Because the self-representation of SU(N) is complex, d can be odd or even and 
consequently the representations admissible with respect to U(2), and SU(2), coincide. 

4.2. Sp(1) 

As is well known (see e.g. Mehta 1966) the self-representation 21 of Sp(f) is real or 
pseudo-real. Thus the number d of the U(2), doublets in 21 must be even (with every 
doublet 2 must be associated the conjugate doublet 2). Consequently d > 1 and from 
the discussion in the preceding section it follows that only singlet and self-represen- 
tation of Sp(1) can be admissible. Note that the analogous result can be obtained if 
Sp(1) f l  U(2), = SU(2), because in this case the centre of Sp(f) and SU(2), must coincide 
i.e. d = l ,  so d > l  for 1>1. 

4.3. SO(N) 

In this case the (tensor) representations are real. Consequently d > 1 and only the 
singlet and self-representation are admissible. 

5. Physical limitations 

As is mentioned in 0 1, in paper I it was shown that the observable states in QHS must 
necessarily be singlets of SU(2),. We now apply this condition to the admissible 
representations of the colour groups G, 2 SU(2),. 

4.4. SU(N) 

Let us assume for the moment that the SU(2), singlets contained in the admissible 
representation 
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of SU(N) are associated with observable particles. Let us consider the particle-anti- 
particle states. Because 

U 

then 

U 

(as previously Il projects on the admissible representation space). Thus the particle- 
anti-particle state is the SU(N) singlet and is generally a mixture of the observable 
(singlets of SU(2),) and unobservable (doublets of SU(2)J one-particle states. Pure 
particle-anti-particle states exist only for r = N, i.e. the observable states are associated 
with the SU(N)  singlets. A question arises as to the interpretation the unobservable 
admissible multiplets. To do this let us consider a three-particle state. From the 
multiplication rules for the Young diagrams we have (we can assume that 0 # r 5 N / 2 )  

U 

Here p = 0 for r < N / 3 ,  p = 1 for r = N / 3  etc., 3r - N s r. If the representation (y)  is 
identified with the unobservable quark multiplet then the representation (3:~) must be 
associated with the (observable) baryon multiplet, i.e. with the SU(N) singlet. 
Consequently N = 3r. Moreover because the baryons are well described as quark 
bound-states with a symmetric (spatially and in flavour) wavefunction, Fermi statistics 
imply that they are antisymmetric with respect to the colour indices. Thus r must be 
odd. 

Concluding, in the SU(N) case 
( a )  the observable particles are associated with the SU(N) singlets, i.e. the colour 

( b )  the unobservable quark multiplet is associated with the (admissible) represen- 

(c) only the groups SU(3r), (i.e. N = 3 r )  where r is odd, are admissible. 
Finally we note that the quark-antiquark (meson) states are observable whereas the 

degrees of freedom are confined; 

tation ( y ) ;  

diquark states are unobservable because 

TI ([@I) = 1 2 r -  2 N / 3  # 0 W N  
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It is interesting that the quark multiplet is a self-representation only for N = 3 
( r  = l), i.e. for the colour group G, = SU(3),. 

4.5. Sp(1) 

Let us assume for the moment that the admissible multiplet 21 contains both observable 
(SU(2), singlets) and unobservable (SU(2), doublets) states. Because 

the (admissible) singlet 1 contains a mixture of observable and unobservable states. 
Moreover this singlet is antisymmetric, i.e. the two-particle states cannot exist. Thus 
the observable states can be identified with Sp(l) singlets only. Furthermore, if the 
(unobservable) multiplet 21 is associated with quarks then the baryon states are 
unobservable because 

i.e. the baryons form the unobservable multiplet 21. For this reason the groups Sp(l) are 
rather inadequate to the description of the coloured states. 

4.6. SO(N)  

In the case of tensor representations considerations exactly analogous to the Sp(1) case 
imply that the observable states are SO(N)  singlets, whereas the admissible self- 
representation N is unacceptable from the physical point of view. 

Let us consider the spinor case. The product of the spinor representation Ds by Ds is 
direct sum of the tensor representations DT i.e. DsODs=  ODT. If Ds contains s 

(observable) SU(2), scalars then ODT must contain s2 observable SO(N)  singlets. But 
every SO(N)  scalar which appears in ODT is a mixture of the observable and 
unobservable states belonging to the DS. Because ODT necessarily contains the 
unacceptable (i.e. non-trivial) representations, from thzirreducibility of Ds it follows 
that it is impossible to separate the s2 (pure) observable states. Thus the spinor 
representations cannot contain observable particles. Furthermore because 
DsODsODs is the unobservable spinor representation then Ds cannot be associated 
with quark multiplet. 

In conclusion the tensor and spinor representations of SO(N)  (except for the trivial 
one) are unacceptable. Consequently SO(N) cannot be a colour group. 

T 

T 

'I- 

6. Conclusions 

We have discussed the consequences of quaternionic structure of the Hilbert space for a 
symmetry of the theory. The admissible symmetry group must be of the form 
G = GF x SU(3r)colour where r is odd. The SU(3r), degrees of freedom are algebraically 
confined. The unobservable quark multiplet is associated with the admissible 
representation ('3. The group SU(3)c,,10,,r ( r  = 1) is favoured for at least two reasons: 
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( a )  Quarks are associated with the selfrepresentation (3) of SU(3),; 
( 6 )  Consequently this feature minimalises the number of colours; for example in 

the SU(9), case ( r  = 3) the number of colours equals (g) = 84, and such a theory is more 
in the domain of science fiction. 
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